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Unified approach to crossover phenomena
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A general analytical method is developed for describing crossover phenomena of arbitrary nature. The
method is based on the algebraic self-similar renormalization of asymptotic series, with control functions
defined by crossover conditions. The method can be employed for such difficult problems for which only a few
terms of asymptotic expansions are available and no other techniques are applicable. As an illustration,
analytical solutions for several important physical problems are presented.@S1063-651X~98!14009-6#
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I. INTRODUCTION

Crossover phenomena are ubiquitous in nature. Proba
they are much more common than phase transitions. W
speaking about crossover phenomena, one usually kee
mind the following picture: A functionf (x), describing a
physical quantity, is continuous in an intervalx1<x<x2 ,
but the behavior off (x) in the vicinity of the boundaries o
this interval isqualitatively differentnearx1 as compared to
x2 . The qualitative change of the behavior of this functio
asx moves from one side to another side, is commonly
derstood as a crossover.

It is possible to quote hundreds of examples of differ
crossovers. For instance, many physical quantities qua
tively change their behavior when passing from the we
coupling to the strong-coupling limit@1#. This concerns, e.g.
the majority of problems having to do with the behavior
energies as functions of a coupling parameter in statist
physics, quantum mechanics, and field theory. Let us m
tion in this respect the dependence of the spectra of Sc¨-
dinger operators on the anharmonicity parameter for va
gated anharmonic models. The energy spectrum of s
models is qualitatively different in the weak-coupling~weak
anharmonicity! as compared to the strong-coupling~strong
anharmonicity! limits.

A famous example of a crossover phenomenon is
Kondo effect @2# when the behavior of a system chang
qualitatively at varying temperature. Although this transfo
mation goes smoothly, with no discontinuities in thermod
namic characteristics, the change of properties is so no
able that one can ascribe a particular point, called the Ko
temperature, to a region dividing qualitatively different r
gimes of low and high temperatures.

Another renowned example of a crossover is the Fro¨hlich
polaron problem@3#. Polaron characteristics, such as its e
ergy or effective mass, change qualitatively when vary
the coupling parameter describing electron-phonon inte
tions. This change happens so explicitly that for about t
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decades there were many speculations suggesting that
exists a phase transition at a particular value of the coup
parameter. However, modern highly accurate Monte Ca
calculations @4# confirm the initial Feynman picture@3#,
proving that we meet here not a phase transition but a c
sical crossover.

In the examples mentioned above, of simple anharmo
models, the Kondo effect, and of the Fro¨hlich polaron prob-
lem, the crossover, when varying a coupling parameter
temperature, is monotonic. However, there are cases w
crossover is not monotonic. This concerns, for instance, o
dimensional antiferromagnet whose characteristics are c
sidered as functions of spin. Then the Haldane gap@5#, as
spin changes from small to large values, exhibits a very n
monotonic behavior becoming zero at each half–odd-inte
spin.

A nonmonotonic behavior can often be met in the dep
dence of spectra of collective excitations on a wave vec
Then the crossover from the region of small wave numbe
corresponding to the long-wavelength acoustic regime, to
region of large wave vectors, corresponding to a sing
particle regime, can go through a nontrivial intermediate
gion displaying maxima and minima, associated with ma
ons and rotons@6–8#.

We could adduce a number of other examples of cro
over phenomena related to interesting physical problems.
us just mention deconfinement in nuclear matter, which
rather a crossover phenomenon than a phase transition~see
the discussion in@9#!. However, we think that it is already
clear that crossover phenomena are widespread in nature
that it is important to know how to describe them.

The description of crossover phenomena occurring in
alistic statistical systems is usually very complicated. This
because one needs to find physical characteristics for a w
range of parameters, which is far from being trivial for com
plex systems. For example, we have to find a functionf (x)
on the whole semiaxis 0<x,`. The variablex may repre-
sent, e.g., a coupling parameter, temperature, or wave ve
Quite often, one can define, more or less easily,
asymptotic behavior off (x) near the boundaries of the inte
val @0,̀ ), that is, whenx→0 andx→`. Such asymptotic
expressions may correspond to the weak-coupling
4197 © 1998 The American Physical Society
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strong-coupling limits, to the low-temperature and hig
temperature expansions, to the long-wavelength and sh
wavelength approximations, and so on. However, in the
termediate region, where there are no small parameters,
cannot invoke perturbative techniques. It would be nice
possess a method allowing one to construct interpolation
mulas only from the knowledge of asymptotic expansio
near boundaries.

There exist several summation techniques, such as P´
approximation, Borel summation, and conformal mappi
that permit one to ascribe effective sums to asymptotic se
@1,10#. However, all these techniques are not applicable
principle for the complex problems we are interested in he
This is because of the following main reasons. First, all th
summation techniques, to be applicable, require the kno
edge of tens of terms in an asymptotic series. Such a lux
ous information is usually not available for nontrivial sy
tems, for which standardly one is able to derive just a f
perturbative terms. Then all mentioned summation te
niques are useless. Second, the latter are justsummation
methods, while we here are concerned with aninterpolation
problem. Summation and interpolation are far from being
same.

The most known interpolation method is thetwo-point
Padéapproximation@11#, which should not be confused wit
the standard Pade´ approximation@10#. However, the former
method, being a derivative of the latter, shares all its d
ciences. Among the most important shortcomings of P´
approximants we mention the following: the necessity
having many perturbative terms, the appearance of unph
cal poles, the ability to deal only with the so-called comp
ible variables, the possibility of describing only those fun
tions that have at infinity a power-law behavior with ration
powers, and the impossibility to correctly treat nonmon
tonic crossover. These difficulties are well known and
peatedly discussed in literature@10–18#. In addition, we re-
mind the reader that the Pade´ approximation is rather a
numerical method.

In the present paper we advance ananalytical approach
for treating interpolation problems of arbitrary nature. Th
approach is free of the shortcomings typical of the two-po
Padéapproximation. What also makes this approach m
general than any other known methods is the possibility
using it for those difficult cases when just a few asympto
terms are available and no other method is applicable.
illustrate the approach by applying it to several difficu
problems with monotonic as well as nonmonotonic cro
over. We would like to stress that the physical problems
consider not only illustrate the wide applicability of the su
gested approach but are also of interest as such. There
the interpolation formulas we derive present analytical so
tions for important physical problems.

II. GENERAL APPROACH

The interpolation approach we advance here is based
the ideas of our previous papers. However, since we do
assume that a reader in the common audience is already
acquainted with these ideas, we provide here a clearly un
standable description of the method in general, complem
ing it by those particulars that are necessary for adjustin
to the interpolation problem.
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Assume that we are looking for a physical characteris
presented by a functionf (x), in which the variablex
changes in the interval@0,̀ ). The standard situation is whe
the physical problem under investigation is so complica
that it is difficult, or even impossible, to find a reasonab
approximation for the sought function in the whole give
interval. However, it is often feasible to get an asympto
expansion for small variables

f ~x!.pk ~x! ~x→0!, ~1!

where k50,1,2, . . . , employing a kind of perturbation
theory. Also, it is often possible to find an asymptotic beha
ior of the function at large variables, say,

f ~x!. f as~x! ~x→`!. ~2!

Then the interpolation problem consists in answering the
lowing question: What can be said about the behavior of
function in the whole interval@0,̀ ) being based on the
asymptotic information in Eqs.~1! and ~2!? Usually, not
much, since the asymptotic expressions~1! and ~2!, being
derived in two opposite limits, have nothing in common wi
each other. In addition, perturbative approximations, such
Eq. ~1!, usually result in divergent series. When one is luc
enough, dealing with a more or less easy case, so that te
perturbative terms in Eq.~1! could be calculated, one coul
invoke some known summation technique in order to asc
an effective sum to a divergent series. However, even in s
a lucky case, the found effective sum may have, and usu
has nothing to do with, the limit~2! from another side of the
axis @0,̀ ). For example, the standard case is when the li
~2! corresponds to an exponential behavior. If one uses P´
approximants or any other techniques based on them,
instance, Pade´-Borel summation@1#, one comes to an effec
tive sum in the form of rational fractions, which cannot b
matched with an exponential. In the less lucky but mo
realistic case, when only a few perturbative terms are kno
all these summation techniques become in principle usel
How could we proceed in such difficult cases in order to fi
an interpolation formula connecting Eqs.~1! and ~2!?

The first thing we need to do is to understand how
extract useful information from a divergent sequen
$pk(x)% when only a few initial terms of it are available.
would be nice to reconstruct the sequence$pk(x)% in such a
way as to improve its convergence properties. Having on
few terms, we cannot resort to the standard summation te
niques. Nevertheless, a reconstruction is possible with
help of control functions@19,20#. Let us denote the proce
dure of introducing control functions as

Cs$pk~x!%5Pk~x,s!, ~3!

wheres5sk(x) is a set of functions such that the sequen
$Pk(x,sk)% has better convergence properties than$pk(x)%.
The name ‘‘control functions’’ reflects their role in contro
ling convergence. The introduction of such functions can
done in several ways. Generally, any procedure of obtain
a sequence of approximations consists of three elemen
calculational algorithm, an initial approximation, and add
tional transformations. For example, by introducing a rela
ation or damping parameter into the numerical Newt
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PRE 58 4199UNIFIED APPROACH TO CROSSOVER PHENOMENA
method, one can improve the convergence of the latter@21#.
Under a given calculational algorithm, one may include co
trol functions in an initial approximationP0(x,s), after
which all the following approximations also become depe
dent ons. This variant of introducing control functions i
probably the most widely used. One takes an initial Ham
tonian, Lagrangian, or action as depending on trial para
eters that are defined as control functions by imposing
addition condition such as the minimal-difference conditi
@19,20,22–26# or the minimal-sensitivity condition@27–32#.
Such conditions are, of course, heuristic. For simple ca
such as zero-dimensional and one-dimensional oscillat
for which perturbative terms of arbitrary order can be o
tained, one may define control functions directly from t
condition of convergence of these terms, ask→` @33–35#.
Finally, if a calculational algorithm with an initial approxi
mation have been fixed, one may introduce control functi
by subjecting the resulting asymptotic series to additio
transformations. These can be either a change of varia
with the reexpansion of the given series in powers of n
variables, or a transformation of a series itself. An exam
of the former case is the order-dependent mapping and o
latter is the Borel-Leroy transformation@1#. However, these
transformations require the knowledge of the analytic
properties of the sought functions itself, which is rare
available.

To our mind, a transformation that one wishes to apply
an asymptotic series in order to construct an analytical
proach must satisfy three main stipulations:~i! It must be
general to be applicable to any function without requirin
the knowledge of its properties that are not known. The s
assumption involved should be the existence of the sou
function. ~ii ! It must besimpleto permit an analytical inves
tigation. At the same time, simplicity is usually a requis
for generality. ~iii ! It must be invertible, with a uniquely
defined inverse transformation. This is evidently necessar
return from a transform to the function itself. In addition,
would be desirable to have an apparent interpretation of
meaning of the chosen transformation.

These stipulations are satisfied by the algebraic trans
mation @36–38# whose general form is

Cs$ f ~x!%5a~x,s!1b~x,s! f ~x!, ~4!

wherea(x,s) andb(x,s) are any functions guaranteeing th
uniqueness of the inverse transformation

Cs
21@Cs$ f ~x!%#5

Cs$ f ~x!%2a~x,s!

b~x,s!
5 f ~x!.

One of the simplest variants of Eq.~4!, as applied to a term
pk(x) of a sequence$pk(x)%, is

Cs$pk~x!%5Pk~x,s!5xspk~x!. ~5!

This variant is not only simple but also has a transpar
meaning whenpk(x) is a kth-order truncated series in pow
ers ofx. Then the transformation~5! effectively increases the
approximation order fromk to k1s.

Assume that, in some way, we have introduced con
functions constructing from an initial sequence$pk(x)% a
transformed sequence$Pk(x,s)% with better convergence
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properties. Now we have to concretize in what sense
properties of $Pk(x,s)% should be better than those o
$pk(x)%. The greatest achievement would be if the tran
formed sequence$Pk% is such that we could notice a relatio
between subsequent termsPk andPk11 . If so, we would be
able to map the low-order terms to those of arbitrary h
order. That is, having just a few initial terms of a sequen
$Pk%, we could extrapolate them to higher orders ofk defin-
ing an effective limitP* of this sequence. To formulate
relation between subsequent terms of a sequence of app
mations means to define the property of self-similarity b
tween these terms. This can be called theapproximation self-
similarity @39–43#. To formulate the latter, we need t
invoke some further transformations. To this end, let us
fine an expansion functionx(w,s) by the equation

P0~x,s!5w, x5x~w,s!. ~6!

Then we introduce an endomorphism

yk~w,s![Pk„x~w,s!,s…, ~7!

with an initial condition

y0~w,s![w, ~8!

following from Eq.~6!. The transformation inverse to Eq.~7!
reads

Pk~x,s!5yk„P0~x,s!,s…. ~9!

By these definitions, the sequence$yk(w,s)% is bijective to
$Pk(x,s)%. The property of self-similarity between the term
of the sequence$yk(w,s)% is written as@39–43#

yk1p~w,s!5yk„yp~w,s!,s…. ~10!

This is nothing but the semigroup propertyyk1p5ykyp . The
relation ~10! is reminiscent of a functional equation of th
renormalization group@1,44#. However, here there is a prin
cipal difference. Renormalization-group equations@1,44# re-
late a function with scaled variables with the function itse
So a renormalization-group equation describes motion w
respect to function variables. In our case, Eq.~10! relates
different approximations from the sequence$yk%. Therefore,
the self-similarity of the approximation~10! defines motion
with respect to approximation orders that play the role
discrete time. In the language of dynamical theory, a
namical system with discrete time is called a cascade. S
the trajectory$yk(w,s)% of this cascade is, by construction
bijective to the sequence of approximations$Pk(x,s)%, a
family of endomorphisms$ykuk50,1,2, . . . % can be named
the approximation cascade@45,46#. An important feature of
this cascade is that the self-similarity of the approximat
~10! is a necessary condition for the fastest converge
@42,43#.

For the purpose of developing an analytical theory, it
not convenient to deal with discrete time. It would be des
able to pass from the discrete indexk50,1,2, . . . to acon-
tinuous variabletP@0,̀ ). This can be done@39–42# by in-
troducing an endomorphismyt(w,s) such thatyt has the
same group property
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yt1t~w,s!5yt„yt~w,s!,s… ~11!

asyk in Eq. ~10! and the values

yt~w,s!5yk~w,s! ~ t5k! ~12!

at integer t coincide. The so-defined family of endomo
phisms$ytutP@0,̀ )% forms anapproximation flowand the
conditions~11! and ~12! define theembeddingof a cascade
into flow @45,46#. From the relation~11! with continuous
time, it is easy to derive the Lie evolution equation

]

]t
yt~w,s!5v t~yt ,s!, ~13!

with the velocity field

v t~yt ,s!5 lim
w→yt

lim
t→0

]

]t
yt~w,s!. ~14!

Equation~13! can be rewritten in the integral form

E
yt

yt1t dw

v t~w,s!
5t. ~15!

To study the properties of an approximation flow, we m
invoke powerful techniques of dynamical theory@47–50#.

What we need to obtain at the end is an effective limit
the sequence$Pk(x,s)%. Since the latter is bijective to th
trajectory$yk(w,s)% of the approximation cascade, the lim
of $Pk% is in a one-to-one correspondence with a stable fi
point of the cascade@45,46#. A fixed point is defined as a
zero of velocity. The cascade velocity can be written as
Euler discretization of the flow velocity@42,43#, which reads

vk~w,s!5yk11~w,s!2yk~w,s!1Ds
]

]s
yk~w,s!, ~16!

where Ds is a variation of a control function. Since th
variation is not known, we cannot find an exact zero of
velocity ~16!, but can find only its approximate zero definin
a quasifixed point. For instance, we may set

Ds
]

]s
yk~w,s!50, ~17!

which is satisfied if eitherDs50 or ]yk /]s50. In both the
cases, the velocity~16! becomes

vk~w,s!5yk11~w,s!2yk~w,s!. ~18!

This and several other ways of defining quasifixed points
the related velocities have been analyzed in detail in R
@51–53#. The motion in the space of approximations, nea
quasifixed point, is described by the evolution integral~15!,
which can be written as

E
Pk

Pk11* dw

vk~w,s!
5t, ~19!
y

f

d

e

e

d
s.
a

where Pk5Pk(x,s), Pk* 5Pk* (x,s,t) is a quasifixed point,
andt is the minimal time necessary to reach this quasifix
point.

Substituting the cascade velocity~18! into the evolution
integral ~19!, we can find a quasifixed pointPk* . Then we
need to make a transformation inverse to the algebraic tr
formation ~4!,

pk* ~x,s,t!5Cs
21$Pk* ~x,s,t!%. ~20!

The resulting approximant~20! is, as is clear from Eq.~19!,
a function ofPk21 , that is, ofpk21 , which can be written as

pk* 5Fk~pk21!.

We may repeat the renormalization procedure forpk21 , ob-
taining

pk* 5Fk„Fk21~pk22!…,

and so on. Afterk steps of such a procedure, called se
similar bootstrap@38#, we arrive at

pk* 5Fk~Fk21„•••F1~p0!…••• !.

In short notation, the latter can be presented as a quasifi
point equation

pk* 5Fk~pk21* !. ~21!

As long as Eq.~21! implies a k-step renormalization, the
resultingpk* will contain two sets

s̄k5$s1 ,s2 , . . . ,sk%, t̄k5$t1 ,t2 , . . . ,tk%

of 2k control functions, which can be denoted as

pk* 5pk* ~x,s̄k ,t̄k!.

Now it is time to recall the main aim of the present pap
that is, to suggest an approach for treating crossover p
nomena. Therefore, we must remember the asymptotic c
dition ~2! and require that the found approximation~21! sat-
isfy the condition

pk* ~x,s̄k ,t̄k!. f as~x! ~x→`!. ~22!

This defines the setss̄k5 s̄k(x) and t̄k5 t̄k(x) of control
functions. With the found control functions, we obtain th
final self-similar approximant

f k* ~x!5pk* „x,s̄k~x!,t̄k~x!…. ~23!

What makes the present paper different from our previ
publications is thesystematic use of the asymptotic con
tions of type ~22! for defining control functions. The sug
gested procedure is designed to self-similarly connect the
and right asymptotic expansions of a function on a giv
interval. For concreteness, we have considered above
connectinig procedure from the left to the right. However,
is evident, the same procedure can be followed from the r
to the left, that is, starting from an asymptotic expansion
the right boundary of the interval@0,̀ ), when x→`, and
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then connecting the obtained approximant with t
asymptotic form at the left boundary, wherex→0. In any
case, we shall arrive at an approximant whose structur
governed by the quasifixed-point equation~21!.

To show explicitly what the structure of the approxima
pk* is, let us take an initial expansionpk(x), asx→0, in the
form of a standard power series

pk~x!5 (
n50

k

anxn. ~24!

Employing the algebraic transform~5!, we have

Pk~x,s!5 (
n50

k

anxn1s. ~25!

Equation~6! reads

Po~x,s!5a0xs5w, ~26!

from which the expansion function is

x5S w

a0
D 1/s

. ~27!

For the endomorphism~7! we get

yk~w,s!5 (
n50

k

anS w

a0
D 11n/s

. ~28!

The cascade velocity~18! becomes

vk~w,s!5ak11S w

a0
D 11~k11!/s

. ~29!

Substituting Eq.~29! into the evolution integral~19!, we find
a quasifixed pointPk* , after which we need to make th
inverse transformation~20!,

pk* ~x,s,t!5x2sPk* ~x,s,t!. ~30!

This results in the expression

pk* ~x,s,t!5F pk21
2k/s~x!2

kakt

sa0
11k/s

xkG2s/k

. ~31!

Let us note that whens→`,

lim
s→`

pk* ~x,s,t!5pk21~x! exp S ak

a0
txkD , ~32!

which explains how naturally exponentials appear in our
proach@38#.

The quasifixed-point equation~21!, as applied to Eq.~31!,
gives

pk* 5@~pk21* !1/nk1Bkx
k#nk, ~33!

where, for brevity, the arguments ofpk* 5pk* (x,sk ,tk) are
not written down and the notation
is

t

-

nk[2
sk

k
, Bk[

aktk

nka0
121/nk

~34!

is used. In the same way we get

pk21* 5@~pk22* !1/nk211Bk21xk21#nk21

and so on down to

p2* 5@~p1* !1/n21B2x2#n2

and

p1* 5~p0
1/n11B1x!n1,

wherep05a0 . This shows that the structure of Eq.~33! is a
sequence of nested roots. For instance, a third-order app
imant looks like

p3* 5$@~p0
1/n11B1x!n1 /n21B2x2#n2 /n31B3x3%n3.

Control functions sk and tk are to be found from the
asymptotic condition~22!. Because of the relation~34!, this
is the same as defining the powersnk and amplitudesBk .
The equalities~34! are nothing but a change of variables,
that instead ofsk andtk we may considernk andBk as new
control functions. For practical purposes, we may at on
write down akth-order approximant in the form of Eq.~33!
and directly definenk andBk from the condition~22!. If the
latter gives several solutions for control functions, then
should opt for the solution that leads to the decrease ofBk
with increasingk. This follows from Eq.~33!, from which it
is evident thatpk* tends to a fixed pointp* if and only if
Bk→0 ask→`.

Before considering complex physical problems using
method we have described, let us illustrate it by a sim
example of the one-dimensional quartic anharmonic osc
tor. Consider the dimensionless ground-state energye(g) as
a function of the coupling, or anharmonicity, parameterg
P@0,̀ ). In the weak-coupling limit, wheng→0, perturba-
tion theory results@54# in the expansion

e~g!.a01a1g1a2g21a3g31a4g4, ~35!

where

a05
1

2
, a15

3

4
, a252

21

8
,

a35
333

16
, a452

30 885

128
.

In the strong-coupling limit, wheng→`, the asymptotic be-
havior is known@55,56# to be

e~g!.A0g1/31A1g21/31A2g211A3g25/3, ~36!

with the coefficients

A050.667 986, A150.143 669,

A2520.008 628, A350.000 818.
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Starting from the linear approximationp1(g)5a01a1(g)
from Eq. ~35!, we find

p1* ~g,n1 ,B1!5~a0
1/n11B1g!n1,

which is the first approximation from Eq.~33!. Requiring the
validity of the asymptotic condition

p1* ~g,n1 ,B1!.A0g1/3 ~g→`!,

we findn15 1
3 andB15A0

350.298 059. From here we coul
recalculatesk andtk using the relations~34!; however, this is
not necessary since, as is explained above, nownk and Bk
play the role of control functions and what we need fina
are exactlynk andBk . The quantitynk can be called across-
over indexandBk a crossover amplitude. With the foundn1
and B1 , we define, analogously to Eq.~23!, the first-order
self-similar approximant

e1* ~g![p1* S g,
1

3
,A0

3D
for the ground-state energy, which is written

e1* ~g!5~a0
31A0

3g!1/3. ~37!

Comparing the values of Eq.~37! with numerical results@55#
that can be treated as exact, we see that the maximal e
for g>0, of Eq. ~37! is 26.8%, occurring atg'0.7.

Similarly, we find the second-order self-similar crossov
approximant

e2* ~g!5@~a0
9/21Cg!4/31B2g2#1/6, ~38!

where the two first terms in the asymptotic expansion~36!
are used andC50.1971 andB25A0

650.0888. The maxima
error of Eq.~38! is 22.9% atg'0.3. Continuing the proce
dure, we get the third-order approximant

e3* ~g!5$@~a0
81/141C1g!4/31C2g2#7/61B3g3%1/9, ~39!

with C150.1116, C250.0784, andB35A0
950.026 48. The

maximal error of Eq.~39! is 21.7% at g'0.1. In fourth
order, we obtain

e4* ~g!5„$@~a0
243/351D1g!4/31D2g2#7/61D3g3%10/9

1B4g4
…

1/12, ~40!

where D150.0625, D250.050 05, D350.0131, and B4

5A0
1250.007 89. The maximal error of Eq.~40! is 21.3% at

g'0.1. The sequence is uniformly convergent, which can
seen from the monotonic decrease of errors from about
to 1%.

We would like to emphasize that our aim in the pres
paper is to suggest asystematic analyticalmethod permitting
one to derive explicit expressions describing crossover p
nomena. The advantage of having accurate analytical for
las, as compared to numerical results of numerical meth
is in the simplicity of analyzing such formulas with respe
to the variation of parameters entering these formulas. A
having an analytical formula corresponding to a measura
quantity often gives more information about the studied s
or,

r

e
%

t

e-
u-
s,

t
o,
le
-

tem than just numbers. As an example, we may mention
geometric spectral inversion in quantum mechanics@57,58#.

III. FRÖ HLICH POLARON

The Fröhlich optical polaron problem@3# is an interesting
physical example of a crossover about which there existe
controversy lasting for around 30 years. Some research
analyzing the polaron ground-state energye(a) as a function
of the electron-phonon coupling parametera, found an indi-
cation of a phase transition from a state of a freely mov
weak-coupling polaron to a localized state of a stron
coupling polaron~see the discussion in@15#!. One such indi-
cation has been suggested by Gross@59#. However, as mod-
ern investigations show@4#, there is no phase transition in th
polaron problem, but the latter is an example of a class
crossover between the weak-coupling and strong-coup
limits.

In the weak-coupling limit, the ground state of the polar
has an asymptotic behavior

e~a!.a1a1a2a21a3a3 ~a→0!, ~41!

with three well-established terms@15,60,61#, in which

a1521, a2521.591 96231022,

a3520.806 07031023.

In the strong–coupling limit, Miyake@62,63# obtained

e~a!.A0a21A21A4a22 ~a→`!, ~42!

where

A0520.108 513, A2522.836, A4524.864.

The terms of the weak-coupling expansion are known h
with a better precision than those of the strong–coupl
expansion. In addition, the coefficientak decreases ask in-
creases, whileAk increases withk. Therefore, here we hav
to construct self-similar approximations from the right to t
left, that is, starting from the perturbative expression~42!,
we find a self-similar approximantek* (a), with control func-
tions defined from the asymptotic condition

ek* ~a!.eas~a! ~a→0!,

in which eas(a) is given by Eq.~41!. The accuracy of the
found self-similar approximantsek* (a) can be evaluated by
comparing them with the valuese(a) obtained by Monte
Carlo numerical calculations@4,64#. As usual, the accuracy
of self-similar crossover approximants is the worst in an
termediate region, where a weak-coupling expansion is c
nected with a strong-coupling one. For the polaron ene
ek* (a), the maximal error occurs ata'10.

The first-order crossover approximation gives

e1* ~a!52a~11Ba2!1/2, ~43!

with B5A0
250.011 775. The maximal error of Eq.~43! is

210.5%. The second-order approximant is
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e2* ~a!52a@11a~B01B2a2!3/2#1/4, ~44!

whereB050.159 468 andB25A0
8/350.002 679. The maxi-

mal error of Eq.~44! is 24.54%. Finally, we may find the
third-order self-similar approximant by taking account of
three known terms in Eq.~41!. This yields

e3* ~a!52a$11a@C01a~C11C2a2!3/2#5/4%1/6, ~45!

where C050.152 804,C150.049 617, and C25A0
16/5

50.000 819. The maximal error of Eq.~45! is 21.5%.
Again, we see that, with increasing order of the approxim
tion, the accuracy of the found crossover approximants
proves from an error of about 10% to about 1%. The v
simple formula~45! gives the same accuracy as the Feynm
variational calculations@3,65#.

IV. KONDO EFFECT

One of the most remarkable examples of crossover p
nomena is given by the Kondo effect@2#. The behavior of the
system, consisting of a local impurity spin and conduct
electrons, interacting by means of an antiferromagnetic
change of strengthJ, changes from asymptotically free a
high temperatures to that of the impurity screened by
electronic lump, via the crossover region whose onse
characterized by the Kondo temperature estimated asTk
5D exp (21/2J), whereD stands for the Fermi energy o
electrons. We consider below only the case of a sing
channel Kondo model with the impurity local moment equ
to 1/2. Most of our knowledge about the problem com
from the exact Bethe-ansatz solution@66,67#, from the field-
theoretic renormalization group~RG! @68–70#, and from the
Wilson numerical renormalization group@71#. It was pointed
out in Ref. @72# that the Bethe-ansatz solution cannot
extrapolated beyond the coupling constantJ of order one
~see also@73#!. Field-theoretic RG results are valid only
J,1 as well. On the other hand, the strong-coupling lim
J→` of the Kondo model was considered in Ref.@72#. Only
the numerical RG treatment of the Kondo problem is va
formally, for arbitraryJ. We suggest below a simple analyt
cal approach valid for arbitraryJ.

Within the framework of the field-theoretic RG in its ap
plication to the Kondo crossover, the central role is play
by the so-called invariant charge or effective electro
electron couplingJinv @68–70#, measuring the intensity o
electron-electron interactions via the impurity spin. T
field-theoretic Gell-Mann-Lowb function could be defined
using the perturbation theory in the weak-coupling lim
@68–70#

b~J!.22J212J3 ~J!1! ~46!

or by means of a sophisticated bosonization technique in
strong-coupling limit@72#

b~J!.2c, c'0.377 ~J→`!. ~47!

The left crossover approximation, satisfying by design b
known limits, can be obtained giving an improved, se
similarly renormalized Gell-Mann-Low function
l

-
-

y
n

e-

n
x-

n
is

-
l
s

t

,

d
-

e

h

b* ~J!522J2S 11
t

2
JD 22

, t[A8

c
54.607, ~48!

andJinv is given @68–70# by the equation

E
J

Jinv dg

b* ~g!
5 lnS v

D D .

The last integral can be calculated explicitly and the res
may be presented in the form

F~Jinv!5 lnS v

Tk
D ,

F~z!5
1

2z
2

t

2
ln~z!2

t2

8
z, ~49!

where v stands for the typical external parameters of t
problem~temperature and magnetic field! andTk is the typi-
cal internal energy scale, or the Kondo temperature

Tk5DJt/2expS 2
1

2J
1

t2

8
JD . ~50!

This expression for the Kondo temperature has the sa
form as the famous Wilson numerical RG result

Tk5D̃~J!~2J!1/2expF2
1

2J
11.5824~2J!G ,

whereD̃(J) is known to have a power series expansion inJ
@71#. The origin of the linear correction in the exponenti
can be traced, therefore, to the strong-coupling limit. To o
knowledge, other analytical approaches, including the Be
ansatz solution, cannot capture it. The effective interact
determined by Eq.~49! increases to infinity asv goes to
zero, in agreement with the numerical RG and stron
coupling limit @71,72,74#.

V. ONE-DIMENSIONAL ANTIFERROMAGNET

Extreme caution is needed when any kind of perturbat
or nonperturbative approach is applied to the on
dimensional Heisenberg antiferromagnet of arbitrary spinS.
Even such a general method as the Bethe ansatz fails fS
.1/2. Nevertheless, the crossover approach can be of us
this situation.

A. Autocorrelation function

The Bethe ansatz, despite its failure in the general cas
S.1/2, allows one to find the magnetic properties of t
Heisenberg antiferromagnetic~AF! spin chains of arbitrary
spin, when a maximum of two deviations is allowed from t
completely aligned~ferromagnetic! state@75#. The magneti-
zation curve and pair correlations had been obtained exp
itly for a strong magnetic field, close to the spin-flip trans
tion. The expression for the autocorrelation functionQ0

5^S0
zS0

z&, as a function of the numberN of spinsS, has a
very simple and transparent form. In Ref.@75#, an equivalent
quantity



n

ite

d

,

el
ox

m

-
ite

be-
ni-
t,
si-
ins

si-
,
eld

e
um
m

self
tiza-
-
pin
q.

n
id
eti-

h
an

ld
d to

ase

m

or

t

4204 PRE 58S. GLUZMAN AND V. I. YUKALOV
F0~N!5
Q0

S2
2S ST

z

NSD
2

is presented~and compared to numerical data! as a function
of the parameters ~demagnetization!,

s[12
ST

z

NS
.

HereST
z stands for the magnetization of a spin-flip phase a

is controlled by the magnetic fieldh, so that close to the
saturation fieldhs54S @75# one has

ST
z

NS
512

2

pSS 12
h

hs
D 1/2

.

Finally, F0 is presented in the form

F0~s!.
s

S
2s21

1

8
p2S2~2S21!2s4 ~s!1!. ~51!

The last term in Eq.~51!, proportional to (2S21)2, clearly
distinguishes an extra contribution from the so-calledC
states, typical forS>1 and absent forS51/2, with high
probability of having two spin deviations on the same s
@75#. An exact, independent ofN, value

F05
2

3
~s51, S51!

is known too@75# and can be used as an asymptotic con
tion. Let us continue the expansion~51! from the region of
small s to the region ofs;1, along the stable trajectory
ending ats51 at the valueF05 2

3 . In order to extend the
validity of Eq. ~51! for S>1 let us add to Eq.~51! one more
trial term;2s6 and find the corresponding effective timet
from the crossover condition at the boundary point. The s
similar bootstrap procedure leads to the crossover appr
mations

F0* ~s!5
s

S~11sS!
, S5

1

2
, ~52!

F0* ~s!5
s

S
expH 2sS exp F2

1

8
p2S2~2S21!2s2

3expS 2
As2

S2~2S21!2D G J , S>1, ~53!

where A58t/p250.253. At S51, F0* (s) agrees both
qualitatively and quantitatively with the data of Fig. 3 fro
Ref. @75#, the maximal error being'4%. The behavior of
F0* (s) for S51/2 andS51 is qualitatively similar~univer-
sal regime! only ass→0 (h→hs), whereC states are sup
pressed by a magnetic field and is different for all fin
s(h,hs) due to the contribution fromC states~nonuniver-
sal regime!. The onset of the regime dominated byC states
may be related to the inflection point of the curveF0* (s) for
s;0.5, emerging forS51 and absent forS51/2.
d

i-

f-
i-

Consider the case ofh→hs , S51. Upon a rapid~instant!
switching off of the magnetic field down to the valueh50,
the correlations between spins should change from the
havior typical of the universal regime to that of the nonu
versal regime, dominated byC states. One may suspec
therefore, that the typical time interval of relaxation of phy
cal properties, such as the pair correlation function of sp
and the magnetization, would be radically different forS
51/2 andS51. To be more specific, consider another phy
cal propertyG, an effective interaction of two spin flips
which can be presented in the vicinity of the saturation fi
as a function ofS andhs2h @76#:

G~S,h!;
2

A2~pSd!211121/S
, d5A42

h

S
. ~54!

As h→hs , G remains positive for arbitrary spins and th
system enters the universal regime, when all equilibri
physical properties for arbitrary spins could be derived fro
the ‘‘Bose gas with repulsion’’ model@76–78#. As h is in-
stantly set to zero, the magnetization should readjust it
from the values near to the saturation to the zero magne
tion. The expression~54! for G can still be used in this situ
ation as an estimate of the effective interaction of two s
flips, at least at the initial stage of relaxation. Then, from E
~54! it follows that G(S51/2,h50)'23.64, i.e., acquires
the negative sign, which is different fromG(S51,h50)
'8.89. The functionG(S,h50) has a peak atS51 and then
saturates asS→` to the positive value 2. The negative sig
of G(S51/2) means an attraction of two spin flips and rap
collapse of the magnetized state to a state without magn
zation, while positiveG(S51) means repulsion and muc
longer relaxation time for the magnetization. That is, we c
expect ananomalously slow relaxationof the magnetization
for spin 1, after an instant switching off of the magnetic fie
from the value close to saturation down to zero, compare
the case of spin 1/2.

B. Ground-state energy

Spin-wave theory gives for the ground-state energyE of
the Heisenberg AF spin chains in the one-dimensional c
the expansion in powers of inverse spin 1/S ~see@79# and
references therein!,

E.2S2S 11
g

2SD , g'0.7. ~55!

The self-similarly renormalized expression, following fro
Eq. ~55!, is

E* 52S2expS g

2S
t D ~56!

and att51, E* (S51)521.419, approximating the ‘‘ex-
act’’ numerical result21.401 @80# with an accuracy of
1.285%, which is an improvement compared to the err
23.64% of the expression~55!, corresponding to ‘‘bare’’
spin waves. ForS52, E* 524.765, in excellent agreemen
with the exact numerical result24.761@81#.
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The error, calculated for the renormalized expression~56!
for S51/2, is equal to 13.54%, becoming much worse th
24.06% for the bare spin waves, as compared to the e
valueE0520.443 15@30#. An attempt to improve the resu
for S51, choosing the effective timet from the exact result
at S51/2, gives the error of25% asS51, suggesting tha
betweenS51/2 andS51 some new physical mechanis
comes into play, invalidating our attempt to match smoot
the ground-state energies for quantum spins based onl
the renormalization of the spin-wave formula. On the oth
hand, a successful estimation of the ground-state energy
S51,2, based on a 1/S expansion, suggests that a simil
mechanism works for allS>1 and quite an accurate estima
can be obtained from the formula~56!.

Motivated by the existence of exact results for the au
correlation function, we assume that the ground-state en
could be expanded aroundE0 in powers ofS2 1

2 , i.e., intro-
duce a trialS2 1

2 expansion around the exact solution atS
5 1

2 :

E;2F uE0u1AS S2
1

2D G , S→
1

2
. ~57!

The coefficientA will be determined by matching Eq.~57!
with the expression for the ground-state energyE, as S
→`:

E;2S2 ~S→`!. ~58!

Following the standard prescriptions of Sec. II, we obtain
left crossover approximation

E* 52FAuE0u1S S2
1

2D G2

, A52uE0u21/2, ~59!

with E* (S51)521.359, approximating the exact resu
with the percentage error of23%, being only slightly better
than the spin-wave result. In order to check the idea ab
similar mechanisms, forming the ground-state energy foS
>1, we rewrite Eq.~59! in the form

E* 52@S21~2AuE0u21!S1~ uE0u2AuE0u11/4!#
~60!

and consider Eq.~60! as another form of the 1/S expansion.
Applying to Eq.~60! the procedure of self-similar renorma
ization, we obtain

E** 52S2expS 2AuE0u21

S D , ~61!

with E** (S51)521.393 and the error20.57%. ForS
52, E** 524.72 and the error is equal to20.86%. We
again conclude that for the ground-state energy a sim
crossover formula exists, covering the region from lar
spins to the small quantum spinS51.

C. Haldane gap

Haldane@5# conjectured the existence of radically diffe
ent elementary excitation spectra for arbitrary integer a
half–odd-integer one-dimensional Heisenberg spins,
former case being gapped with the smallest value of the
n
ct

y
on
r

for

-
gy

e

ut

le
e

d
e

ap

D at k5p, while the latter case is gapless. In the limit
large S, Haldane used an approximate mapping onto
O(3) nonlinears model, leading to the following behavio
of the gap@5#:

D;S2exp~2pS!, S→`. ~62!

Strictly speaking, the formula~62! describes only the
‘‘slow’’ part of the full dependence and does not take in
account the ‘‘fast’’ part, describing the gap oscillations wi
changing spin, with zeros at half–odd-integer spins a
maxima at integer values. Nowadays, it is established
yond a reasonable doubt@82# that for the half–odd-intege
spins

D[0 S S5
1

2
,

3

2
,

5

2
. . . D . ~63!

For small integer spinsS51,2, the values of the gap ar
known from extensive numerical calculations. We sugg
below a simple way to estimateD for arbitrary integer spins,
based on the self-similar renormalization of a trialS2 1

2 ex-
pansion for the Haldane gap and the knowledge of
asymptotic form~62!, as S→`, together with the demand
for the absence of the gap for half–odd-integer spins.

Let us write the trial expansion for the gap in the vicini
of the pointS5 1

2 in the following form, satisfying the con-
dition D(S5 1

2 )50:

D;a2S S2
1

2D 2

1a3S S2
1

2D 3

1a4S S2
1

2D 4

1a5S S2
1

2D 5

1••• S S→
1

2D , ~64!

whereak are positive. Following the general prescriptions
Sec. II, one can self-similarly renormalize Eq.~64! to the
form

D* 5a2S S2
1

2D 2F12C1S S2
1

2D Gn1

3expH C2S S2
1

2D 2F12C3S S2
1

2D Gn2J . ~65!

We require that Eq.~65! agree with Eq.~62!, asS→`, and
also that atS53/2, D50. Choosing the unknown coeffi
cients and powers in Eq.~65! so as to satisfy the require
conditions, we arrive at

D* 5S S2
1

2D 2

expF 2

S S2
1

2D 2

S2
3

2

G , ~66!

where the value atS5 3
2 is defined as the limit from the right

S→ 3
2 10. At S51, D* 50.412, in good agreement with th

exact numerical value 0.4105@80#; at S52, D* 50.025,
agreeing by an order of magnitude with the numerical va
0.085(5) @81# and in better agreement with the value 0.0
quoted in Ref.@83#. The formula~66! can be generalized by
requiring that the exponential in Eq.~66! should have the
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form of an expansion in 1/S as S→` and zeros atS
5 5

2 , 7
2 , 9

2 , . . . , which yields

D* 5S S2
1

2D 2

expF 2S S S2
1

2D 2

S S2
3

2D 1

S S2
3

2D 3

S S2
5

2D 3

1

S S2
5

2D 4

S S2
7

2D 5 1

S S2
7

2D 5

S S2
9

2D 7 1 . . . D G , ~67!

where again the values atS5(2n11)/2 are defined as th
limits from the right. The value of the gap atS51, given by
Eq. ~67!, remains practically the same as above, while aS
52, D* 50.068. The gap, when described by the formu
~67!, practically vanishes for all integersS>3, in agreement
with the conclusion of Ref.@81#.

D. Other characteristics

Self-similar approximants can be constructed for ot
characteristics as well. Here we briefly mention only
couple of examples. Staggered magnetizationS of the anti-
ferromagnetic anisotropic Ising-Heisenberg model of s
1/2, as a function of the anisotropy parameterg ~equal to
zero for the Ising and one for the Heisenberg model!, can be
presented as expansion, valid at smallg @84,85#,

S~g!.12g22
1

4
g42•••. ~68!

At g51, according to Ref.@85#, the long-range order param
eterv`5S2(g) should disappear, i.e.,S(1)50. Let us con-
tinue the expression~68!, from the region ofg!1, to the
region of g;1, satisfying the boundary condition for th
disappearance of the long-range order. Then the left cr
over approximation

S* ~g!5~12g2!expS 2
1

4
g4D ~69!

satisfies the right boundary condition. Comparingv *̀
5@S* (g)#2 with the extrapolation of numerical data, pr
sented in Fig. 30 of Ref.@85#, we found that they almos
coincide.

At zero temperature, the dispersion, known from the l
ear spin-wave theory, is modified by the factorZ in the spin-
wave velocity and the expansion forZ in powers of the in-
verse coordination number 1/z was obtained@86,87#:

Z.11
1

4Sz
1

3

16Sz2
1•••.

We continue this expression from the small values of 1/z to
arbitrary z, while the value of spin is fixed, and determin
the effective timet from the exact value ofZ5p/2, at S
51/2, z52 @87#. The left crossover approximation has th
form
r

n

s-

-

Z* 511
1

4Sz
expS 3

4z
t D , t52.21. ~70!

At S51/2, z54 ~square lattice! we obtain from Eq.~70!
Z* 51.189, in excellent agreement with the results obtain
by different methods@87#. At S51/2, z56, the case corre-
sponding to a simple cubic lattice,Z51.11, i.e., the quantum
corrections to the spin velocity remain important.

VI. COLLECTIVE EXCITATIONS

The knowledge of the elementary excitation spectrum
one of the key points for the description of many-body pro
lems. Dealing with this extremely complicated problem, o
often encounters the situation when the elementary excita
spectrumv(k) is known for two different regions of the
wave vectork. In the hydrodynamic regionk→0, the form
v(k) could be determined either from experiment or the
retically. In the short-wavelength regionk→`, a dispersion
corresponding to free particles should recover. Using
self-similar renormalization, it is possible to reconstru
v(k) for arbitrary k. Consider some problems of this kin
frequently occurring in condensed matter physics.

A. Bogolubov spectrum

The case of a linear ink spectrum, ask→0, and of qua-
sifree massive particles, ask→`, is of the most general type
when Bose systems are considered. This kind of behavio
inherent to Bose systems and does not depend on the de
of an interaction potential@6#. Consider the case of a
anomalous sound dispersion, corresponding to an instab
of the spectrum, ask increases@7#. The following asymptotic
expressions are available:

v~k!.ck~11gk2!, g.0 ~k→0!,

v~k!.
k2

2m*
~k→`!. ~71!

Here c is the velocity of sound,g is responsible for the
instability of the spectrum, andm* is the effective mass. The
left crossover approximation can be derived following t
standard prescriptions of Sec. II, which gives a result ide
cal to the Bogolubov spectrum of a weakly nonideal Bo
gas:

v* ~k!5ckA11S k

2m* c
D 2

. ~72!

Note that in distinction from the microscopic Bogolubov a
proach, valid for a diluted Bose system, the formula~72!
may be used for arbitrary densities, assuming that the par
etersc and m* are taken from experiment. It looks rathe
intriguing that the same formula~72!, which is usually de-
rived with some lengthy calculations, can be immediat
obtained by self-similarly interpolating the simp
asymptotic expression~71!.
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B. Liquid helium spectrum

Consider the case when more terms in the hydrodyna
limit are available, but the ‘‘anomalous’’ dispersion coef
cient g is very small. Also, free particles are replaced
quasifree ‘‘dressed’’ particles with an effective massm* .
The asymptotic behavior of the spectrum is

v~k!.ck~11gk22dk4!, g'0, d.0 ~k→0!,

v~k!5
k2

2m*
~k@1Å21!. ~73!

This situation is typical for liquid He4, where g50
60.05 Å2, d50.2960.03 Å4 @88#, and m* 52
23m(He4) @89#. The crossover approximant derived fro
Eq. ~73! reads

v* ~k!5ckF @exp~2dk4!#61S k

2m* c
D 6G 1/6

. ~74!

The expression~74! generalizes the Bogolubov spectru
~72!. The main difference originates from the region of t
intermediatek;1. The formula~74! describes the experi
mental data for the elementary excitation spectrum of liq
He4 @88# both qualitatively, predicting the existence of a r
ton minimum even for the bare massm* 5m(He4), and
quantitatively, with the maximal percentage error of abo
20%. The value of the effective massm* 5223m(He4)
may have some relation to the formation of two-particle a
three-particle correlated states@90#. We took above for esti-
mates the value of the sound velocity equal to 2
3104 cm/s.

Our approach to deriving the spectrum for arbitraryk cor-
responds to the Feynman approach@65#, in which only the
information about the short-wavelength and long-wavelen
parts of the structure factorS(k) are used. Then, instead o
the phenomenological Feynman formula v(k)
5k2/2mS(k), we apply the self-similar renormalization. Th
result is a Bogolubov-type formula. Thus a bridge betwe
the Bogolubov and Feynman approaches to the spectru
Bose systems@91# is established. The formula~74! is better
qualitatively than the original Bogolubov spectrum~71!,
since it predicts the maxon-roton region, and better quan
tively than Feynman formulas, especially in the roton regi
Here the Feynman formula works with an error of abo
100%, while Eq.~74!, in the worst case, gives an error abo
10%. Our formula~74! is a three-parameter representation
the spectrum of liquid He4, with parametersc, d, andm*
coming from the regions of long-, intermediate-, and sho
wavelengths, respectively.

The case of a stable soundlike spectrum, ask→0, and of
quasifree particles, ask→`, can also correspond to
collective-excitation branch in liquid He3 @92#. The follow-
ing asymptotic expressions are available:

v~k!.ck~12uguk2! ~k→0!,

v~k!.
k2

2m*
~k→`!. ~75!
ic

d

t

d

4

th

n
of

a-
.
t
t
f

-

In analogy to the case of He4, we find the spectrum

v* ~k!5ckF @exp ~2uguk2!#41S k

2m* c
D 4G 1/4

. ~76!

However, since phonons in liquid He3 are intertwined, in the
region of intermediate wave vectors, with other collecti
excitations, it is impossible to observe rotons.

C. Spectrum with a gap

Assume that the spectrum has a gap, ask→0, and pos-
sesses a minimum at this point, while, ask→`, it becomes
linear:

v~k!.D1ak2, a.0 ~k→0!,

v~k!.vk ~k→`!. ~77!

The left crossover approximation can be readily obtain
leading to the expression

v* ~k!5DA11S vk

D D 2

, ~78!

analogous to the spectrum of the Bardeen-Cooper-Schrie
model of superconductivity.

D. Dynamical scaling

The characteristic frequencyvc(z,k), appearing in the
dynamical scaling hypothesis@8,93# and proportional to an
inverse characteristic relaxation time of an order parame
has two asymptotic forms, depending on the ratiok/z, where
z stands for the inverse correlation length. We shall disc
below only the behavior of density-density correlations
liquid systems@8#. Asymptotic expansions in the hydrody
namic regime (k/z!1) and in the fluctuation regime (k/z
@1) are known:

vc~z,k!.DTk2F11BS k

z D 2

1••• G , B.0 S k

z
!1D ,

vc~z,k!.AkzF11A8S z

kD 2

1••• G S k

z
@1D , ~79!

whereDT is the thermal diffusivity andz is the dynamical
critical index, which cannot be determined self-consisten
within the framework of the dynamical scaling. The value
B is estimated asB51 @94# or B53/5 @95#.

Assume that the values ofz andA are known. Then one
can reconstruct the analytical expression for the characte
tic frequency for arbitraryk/z, obtaining the left crossove
approximation

vc* ~z,k!5DTk2F11CS k

z D 2Gn

, ~80!

where

C5z2S A

DT
D 2/~z22!

, n5
z

2
21.
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For z53 @8# we obtain n51/2. If now we plug into the
expression~80! the dependences ofDT;eg2a andz;en on
the distancee from the critical point@8#, then we recover
immediately the well-known relation between the critical i
dicesz, g, n, anda, that is,z521(g2a)/n ~all defini-
tions are standard and may be found in Ref.@8#!, which
represents one of the central results of the dynamical sca
hypothesis. From this scaling relation, the dynamical criti
index could be estimated from the values of the three o
indices.

VII. CONCLUSION

We suggested a general approach to describing cross
phenomena of arbitrary nature. The approach permits on
construct an accurate approximation for a function in
whole domain of its variable from asymptotic expansio
near the boundaries. The minimal information needed to
tain a self-similar interpolation formula is two terms of a
expansion near one of the boundaries and the limiting va
at another boundary. Having only three such terms, it is
ready possible to get a reasonable approximation for
sought function in the total crossover region. When m
terms are available, the procedure may be continued,
proving the accuracy of approximations. An important fe
ture of the method is that the self-similar crossover appro
mants always preserve the correct structure of the asymp
expansions at both boundaries of the interpolation reg
This is a clear advantage of the self-similar approach as c
pared to often used heuristic interpolations that may spoil
structure of the asymptotic expansions.

The possibility of obtaining accurate approximations fro
extremely scarce information, when no other methods wo
is based on the following three points:~i! the idea of a self-
similar renormalization group treating the transfer from o
approximation to another as the evolution of a dynami
system, the approximation cascade;~ii ! the requirement tha
this evolution be invariant with respect to algebraic transf
mations; and~iii ! the use of control functions providing th
stability and convergence of procedure.

Control functions introduced under the algebraic se
similar renormalization play, for the crossover problem,
role of effective crossover indices and effective crosso
times. Depending on whether we start the renormaliza
a

l

ng
l

er

ver
to
e
s
b-

e
l-
e

e
-

-
i-
tic
n.

-
e

k,

e
l

-

-
e
r
n

procedure from an expansion either near the left or near
right boundary, we may distinguish the left and right cros
over indices and, respectively, the left and right crosso
times. Similarly, the resulting expressions for the sou
function may be called the left and the right crossover
proximations.

The form of the resulting self-similar approximations d
pends on the properties of the asymptotic expansions u
Mathematically equivalent expansions lead to the same f
of crossover approximations. For example, compare
ground-state energy of the Fro¨hlich polaron as a function o
the coupling parameter and the spectrum of collective e
tations as a function of the wave vector. The weak-coupl
series in powers of the coupling parameter is analogou
the long-wavelength spectrum in powers of the wave vec
The strong-coupling limit for the optic polaron is similar t
the short-wavelength limit for the collective spectrum. As
result, the crossover approximation for the polaron ene
has the same dependence on the coupling parameter a
crossover approximation for the collective spectrum on
wave vector. Thus, physically different quantities may ha
the same mathematical representation as a function of
corresponding variables. Keeping this in mind, we may s
that there existclasses of universalityof crossover phenom
ena.

It is worth emphasizing that the crossover approximatio
derived by applying the approach developed usually comb
good accuracy with simplicity. This suggests that the se
similar renormalization provides a natural tool for extracti
the maximal information from very short perturbative ser
that are impossible to analyze by other methods. Moreo
this makes us think that self-similarity, in some sense,
hidden in asymptotic series. This is why the self-simi
renormalization becomes a natural effective tool of extra
ing such hidden information. The different physical e
amples presented in this paper prove as well that this is
a general tool applicable to arbitrary crossover phenome
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